
Accepted for publication in IAMOT – International Association for Management
of Technology (May 2003)

 Author's Copy

 1

A User Model Framework to Help the Development of Usability
Oriented Systems’ Interfaces Associated With Different Users.

Simone Bacellar Leal Ferreira
Associate Professor, Ibmec-RJ
Av. Rio Branco, 108, 5th. floor, Rio de Janeiro, 20040-001, Brazil
lealferreira@ibmecrj.br

Abstract:
When designing a friendly interface, designers must make sure that

users feel comfortable and encouraged to use it, and that the interface suits
each user’s needs and expectations. For this, the interface must have several
facilities that should be presented in varying forms to different users. To obtain
such interfaces, it is necessary to analyze and know different users well, thus
building a “user model” or a “user profile”. This paper presents a user model,
and, based on the user model presented, a framework has subsequently been
developed, allowing the association of different users to different interfaces.
This framework helps the requirements’ engineer when defining non-functional
requirements. He may consult the framework in order to define the
requirements necessary to design an interface that may be instantiated for
different users or for the same user that has changed his or her expertise level.
Such a characteristic reduces the need for users to rethink and remember and
offers a less expensive system. The framework facilitates the process reusing
internal and external components, behaviors and designs throughout a system,
maintaining consistency with purpose.

Keywords: user interface, framework, user Model, user-centered design

Introduction

All software is designed with the purpose of satisfying the expectations of
users, so it is essential to know the users (Apple,1992) (Foley, 1990).

User interface is the way in which a user interacts with a system. It must
therefore, be well designed in order to be easily used. To be friendly, an
interface must suit each user’s need and satisfy his/her expectations.

To obtain such interfaces, the designers must make an all out effort to
ensure that users feel comfortable and encouraged to use the system. To
achieve this end they must be able to communicate with the machine in the
most natural way (Foley et al, 1990) and (Pressman, 1992).

In order to design a friendly interface, the process of software
development must be “user centered”, that is, the designer must analyze and
know different users very well, carrying out a user analysis in order to
understand what kind of expectations users have. The designer must also find
ways to represent how users think, feel, behave, etc.

One way of doing this is to analyze users and sort them into different
groups according to their behavioral similarities. With this knowledge, it is
possible to build a “user model” or a “user profile”.

People, however, do not think of computer systems, applications and
user interface in the same way; they have different conceptual models of

mailto:lealferreira@ibmecrj.br

Accepted for publication in IAMOT – International Association for Management
of Technology (May 2003)

 Author's Copy

 2

systems. Furthermore, as users interact with various applications, their
conceptual models change over time.

Since there are several groups, user analysis must also include several
user models and emphasize the need for interfaces with distinct features for
each user (Hix, 1993), (Collins, 1995) and (Shneiderman, 1998). An interface
capable of satisfying several different users must be able to offer varying levels
of functionalities and distinct facilities presented in different forms according to
user needs.

The present work portrays a user model developed on the basis of
certain known cultural models. Based on the user models presented, a
framework was then developed with the purpose of allowing the association of a
variety of users with several interfaces and functionalities that might be
instantiated for different users or for the same user that has changed his or her
expertise level.

A prototype of an application based on such a framework has been
developed and tested together with a conventional application, similar to the
one designed, using at most times fifty graduate students at PUC. Results are
described later on in this work.

User Model

The final user must always be the main focus of the designer. All
potential users must be analyzed in order to discover user characteristics, their
tasks and the environment for which the system is being designed (Souza and
Leite, 1995).

It is essential that all users feel comfortable and encouraged to use
applications; communication between them must be friendly. Since human
beings differ greatly and people are continually undergoing change, the systems
must be capable of adapting to different users. In order to achieve this, human
and domain factors (problem comprehension) must be studied.

System development is a process that depends on social factors.
Software is developed based on a social context and on the client’s and the
development team’s context. Several factors must be considered, such as
background, social level, personality and behavior among others (Leite, 1995).

To create a product that can really be used by a group of people, it is
necessary to identify and understand the group. Therefore, it is necessary to
describe how people perform their tasks, what they think about their work
environment and their limits (Apple,1992). An interface may be friendly to a
particular group but not so to another.

To design good interfaces, one of the requirements is to know the final
users well. During the analysis, the designer discovers what the user expects
from the system, that is, he puts together a user conceptual model (Collins,
1995), (Hix, 1993), (Pressman, 1992).

The elaboration of a user conceptual model is based on the users´
expectations, objectives and understanding of the system. This will depend on
the knowledge and previous experience of each person (Roberts et al, 1998).

Since the perception of the system is influenced by the various
experiences a person has had, each user has his own conceptual user model.
To design a friendly interface, the designer must know the potential users well.

Accepted for publication in IAMOT – International Association for Management
of Technology (May 2003)

 Author's Copy

 3

The software development process must be “user centered”; the
interface must be designed bearing in mind the need to attend to the user’s
necessities (Norman and Draper, 1986). In this process, activities during the
analysis must lead to information about the users, their tasks and about the
application domain.

One of the ways to know the users is by elaborating a “user model” (or
“user profile”) that describes the user’s characteristics. But the designer cannot
forget that with continual use of the application, the user’s perception of the
system changes and as he or she creates a new conceptual model of the
system, his/her expectations, understanding and objectives also change. This
gives a peculiar characteristic to the users’ model: since it is based on the
features, expectations, understanding and objectives of the user, it must also be
able to be modified. The users´ analysis must then include several users´
profiles (Hix, 1993), (Collins, 1995) and (Shneiderman, 1998) that allow users to
change over to different profiles.

To truly satisfy users’ needs, the application must offer different levels of
functionalities according to their needs. But in fact there are many profiles of
users, so one system alone can hardly be expected to suit all the necessities of
different types of users. What is often seen is that either the application
presents an excess of functions for determined people or that it lacks features
for others. In practice, it has been verified that a great many users feel
frustrated when using a system.

To be accepted, an application must be able to allow users to use all or
part of its features in different ways, offering users different interface visions.
Customization facilities can be included in order to allow the user to define
different sets of specific commands, modify the default that it is being offered to
him and customize tool bars among other activities. But to do this, the user
must first of all learn other tasks related to the customization, which is a difficult
procedure for beginners (Murray, 1991).

What is desirable then is the construction of systems that can be
instantiated, that is, designed with distinct aspects for each user, with different
functionalities, so that it can be used by diverse groups of people (Apple,1992)
in different ways. To develop such systems, the present work proposes a
framework that has been developed based on a user model.

To build the current user model, it is necessary to analyze people; one
must observe their behavior, their thoughts, feelings and actions; in fact, it is
necessary to understand the user’s culture once that culture is the behavior that
is learned and that is formed by thoughts, feeling and actions (Kroeber and
Kluckhohn, 1954). Culture is learned and not inherited (Hoft, 1996).

Based on this fact, the proposed user model has been defined based on
cultural models. There are several models available and all of them accede to
the fact that most components of culture are invisible, buried in unconscious
reality. (Hoft, 1996). Using a cultural model it is possible to analyze the cultural
context of a person by comparing the similarities and differences among a
group of people using certain variables. A cultural model is useful when building
a user model (Ferreira, 1999).

The user model presented herein is based on certain known cultural
models: Edward T. Hall’s model (Hall, 1993), David A. Victor’s model (Victor,
1992), Geert Hofstede’s model (Hofstede, 1991) and Fons Trompenaars’ model

Accepted for publication in IAMOT – International Association for Management
of Technology (May 2003)

 Author's Copy

 4

(Trompenaars, 1993). These cultural models were carefully studied and the
following cultural variables were chosen because they could be useful as user
variables.

 Objective: the user’s objective when using an application.

 Social-Cultural Conditions: social-cultural factors.

 Formation: background of a person.

 Function: position at work.

 Age.

 Geographical Location: geographical location of the person’s home.

 Time Behavior: how people deal with time when performing their tasks.
People may be Monochronic or Polichronic. Monochronic people do one
thing at a time while the polichronic may do several things simultaneously.

 Knowledge: the user’s specific knowledge about computer systems and the
application domain.

 Tolerance with Uncertainty: refers to how the user deals with unknown
situations and mistakes.

 Psychological Factors: psychological factors that can influence the
performance of a user when using the system.

The Presented Framework

The framework for object-oriented applications introduces promising
technology for the refinement of software design and implementation, reducing
cost and improving quality (Fayad, 1997).

Originally, object-oriented technology focused on framework as a
software component. But framework is more customizable than components
and has more complex interfacing. Being more powerful, it reduces the efforts
required to develop applications that can be customized (Johnson, 1997).

Frameworks offer standard interfaces that allow for the reuse of existing
components, that is, they supply components with a reusable context, providing
a standard way for components to treat errors, change data and call operations
in each one (Johnson, 1997).

The base of frameworks consists of a library of classes. To construct
such a library, it is necessary to find proper abstractions, called abstract
classes, for concrete classes (Shlaer and Mellor, 1992). A framework generally
includes concrete subclasses that can be used immediately (Gamma et al,
1995) and they provide the default behavior and implementation of the abstract
classes (Shlaer and Mellor, 1992). The abstract classes specify the execution
flux and can be specialized (Bäumer et al. 1997) by means of subclasses.

The applications developed based on such frameworks are designed by
means of customization of the classes and are very useful in the development
of consistent user interfaces. They reuse their code and design, facilitating
extensibility and reuse (Pree, 1995).

In order to develop the proposed framework, it was necessary to built a
user model. The study of user modeling became important over the last few
years, but little progress was made on how to use non-functional requirements,
such as human factors, in the process of interface instantiation (Strachan et al,
1997). To develop the current research, several previous works were analyzed

Accepted for publication in IAMOT – International Association for Management
of Technology (May 2003)

 Author's Copy

 5

(Rich, 1979), (Marins, 1987), (Murray, 1991), (Ambrosini,1997), (Benaki and
Spyropoulos, 1997), (Gutkauf et al, 1995), (Paranagama and Arnott, 1997), and
all of them made clear the fact that if the characteristics of each user are
considered, the system will have a greater chance of success.

The proposed framework has the following basic classes (figure 1):
Mediator; Historic; Profile; Interface; Application; Record; Login

Figure 1: Main classes of the proposed framework

The Profile class contains several characteristics that define the profile of
the user. It is an abstract class that specifies common attributes and
functionalities of users. Classes in this hierarchy collaborate with classes in the
interface hierarchy, in order to offer adequate interfaces to users.

The Interface class defines several default interfaces that are open to
each profile of users. This class depends on the Application class; therefore it is
defined according to the current application.

In order to make it possible to associate a user to one default interface
there is the Record class, responsible for the initial definition of the profile of the
user.

The Application class is responsible for the functionality of the system.
The Mediator class is responsible for the communication and

synchronism of the components described above.
The Login class is responsible for the first definition of the profile of the

user. When the user logs for the first time into the system, the user supplies
certain information that will help to define his profile.

Class Profile

The proposed user model considers several defined variables based on
certain previously known cultural models. Figure 2 shows an example of a user
class profile.

Since no single user can represent the majority of users, what has really
happened is that several user profiles (models) have had to be developed. In
the proposed framework, several profiles are represented in a class structure;
there is a super-class called user, and each user profile is represented by a
sub-class of users. The attributes of each sub-class are obtained from the user
model.

Application

Profile

Historic

Interface
Record

Mediator

Login

Accepted for publication in IAMOT – International Association for Management
of Technology (May 2003)

 Author's Copy

 6

Each user may have his/her state or class changed. Once his/her
perception changes a little, he/she changes to another state. Once the changes
are very significant, he/she changes to another class, that is, to another profile.

The Objective Class portrays the user’s objective while using an
application. This objective may change as his/her perception changes. At one
moment a user may want to use certain software, such as a word processor
only as a simple text editor and at the next moment he/she may want to use it
as a complete editor, including certain features such as that of equation editor.

Figure 2: Profile Class Structure

The SocialCulturalConditions Class is a class that models factors related
to the type of life the user leads, that is, the social-cultural factors. This class is
formed by the Formation, Function, Age and Geographical Location classes.

The Formation class determines the background of a person; it models
not only his/her academic level but also his/her field (human sciences,
biomedical and others).

The Function class is important when designing software that will be
used in some institutions. Probably people with different functions will access
different functionality of the system.

The Age class may determine several characteristics of an interface,
especially of visual aspects, such as the choice of the default color combination
(Ferreira et al., 1999).

The Geographical Location class models some of the characteristics
inherent to users, characteristics determined by the geographical location of his
home. Metaphors and colors may be adequately chosen if the geographical
location of the user is known.

The Time Behavior class shows how people deal with time when
performing their tasks. It has two sub-classes: Monochronic and Polichronic.
Monochronic people prefer doing things one right after the other while

DomainSkills

Monochronic Polichronic Strong Weak

. . .

Function Age GeographicLocation Formation

Factor _1 Factor_2 Factor_n

TimeBehavior UncertaintyTolerance Objectivs SocialCulturalConditions PsychologicalFactors

New Intermitent Usual New Expertise Intermediary

{or} {or}

ComputerSkills

User

Computerknoledgel

Knowledge

DomainKnowledge

Accepted for publication in IAMOT – International Association for Management
of Technology (May 2003)

 Author's Copy

 7

polichronic people may do several things at the same time. These classes are,
therefore, mutually exclusive, having a disjunction restriction.

The Knowledge class refers to a user’s specific knowledge about
computer systems and the application domain. It has two sub-classes:
ComputerKnowledge and DomainKnowledge. Since a user may have both sets
of knowledge, these sub-classes may occur simultaneously with a superposition
restriction.

The ComputerKnowledge sub-class inherits the Computerskills sub-class
that defines the user’s skills when using a computer. The ComputeKnowledge
sub class models the user’s knowledge about the application domain through
the DomainSkills class.

The UncertaintyTolerance class refers to how the user deals with
unknown situations and mistakes. It has two sub-classes: Strong and Weak.
Strong refers to people who have no problem with unknown situations and
Weak to people who can’t deal with them easily. These classes have a
disjunction restriction. They were considered sub-classes and not states
because the present framework intends to define a user’s model that better
models the user’s characteristics. The way someone behaves when dealing
with unknown situations is inherent to his/her own personality (Hofstede, 1991);
maybe, if necessary, a person may react in a different way to the way that is
more natural for him/her, but that would happen only because of dire need;
his/her characteristics, though, would still remain the same under normal
conditions. The present framework has therefore considered that when adapting
interfaces to the nature of a person, it would be better to model this attribute as
a sub-class, so as not to make it necessary for a user to change his/her state,
which would go against his/her nature.

The PsychologicalFactors class models several psychological factors
that can influence the performance of a user when using the system. This class
depends on the application and its specializations must be defined for each
application. But they must be included because they are relevant to the model.

Interface Instantiation

Based on the proposed framework and having a previously-designed
system, when a user first accesses the system, the general idea is that he/she
must be made to answer several questions with answers that are recognizable
by the system in order to discover the profile of the user in question. Then,
according to this profile, a proper default interface can be opened up. However,
if the user so desires, he/she can choose another default interface.

As the user uses the application, the system monitors all his/her
interactions, tracking all actions, whether they be right or wrong. As a
consequence of the continuous use of the application, the user improves his/her
ability on the computer and his/her perception of the system naturally changes.
Once the user’s perception changes, his/her profile also changes and the
system then suggests a new default interface, more specialized according to
the new profile, yet still consistent with the previous one. The user may change
to this new one or decide to remain in the one he/she is already in. In the same
way, if the user demonstrates that he/she is encountering difficulties with an
interface, the system will propose another, less specialized one.

Accepted for publication in IAMOT – International Association for Management
of Technology (May 2003)

 Author's Copy

 8

A user may also change his default interface at anytime whatsoever
without waiting for a suggestion from the system.

Customization facilities can be included in order to allow the user to
define different sets of specific commands and change toolbars, thus modifying
the default that has been offered.

Consistency is essential because at the rate that the user’s perception of
the system changes, a new default interface with more features is offered to
him/her. But all interfaces must have the same type of behavior and the same
type of layout. They differ only in terms of details. Consistency reduces the
need for users to rethink and remember and offers a less expensive system.

To be able to offer different consistent interfaces, the user model must
possess a mechanism of data and operation extensibility. In answer to the
requirements of the considered model and in order to maintain consistency, an
object-oriented approach seems the most indicated. In the object-oriented
paradigm, besides the possibility of extensibility for data operations and code
reuse, it is possible to encapsulate and protect the definition of data structure
and valid operations on this structure.

To make this potentiality possible, object-oriented programming is used.
The concept of classes allows the implementation of abstract data and
inheritance facilitates the reuse and adaptation of blocks (Pree, 1995), and
makes the system more suitable for different profiles of users (Collins, 1995).

Validation

In order to make a first validation of the proposed framework, a prototype
of an application (a word processor) based on framework has been developed.
This prototype has been tested and compared with a conventional application,
similar to the one designed (word for windows), using in average fifty graduate
students at PUC. The students used both applications during a short period of
time and later answered certain questions that enabled a comparison to be
made of both applications. The great majority of students considered the
application based on the developed framework more intuitive, easier to use,
less confusing, easier to customize, in short, more friendly (Ferreira, 1999).

Conclusions

To be friendly, an interface must suit each user’s needs and satisfy
his/her expectations, containing an assortment of facilities to be presented in
varying forms to different users. To obtain such interfaces, it is necessary to
instantiate them according to each user’s characteristics.

An application used by different people that have differing conceptual
models of the system must rely on a framework that enables an association
between users and software. To be considered friendly the interface must
match the conceptual model that each user has.

This work presented a framework that has been developed with an aim
towards associating different users to different interfaces. To develop such a
framework it has been necessary to build a user model in order to mirror the
users’ peculiarities.

Accepted for publication in IAMOT – International Association for Management
of Technology (May 2003)

 Author's Copy

 9

By consulting this framework the designer is able to define the
requirements needed to design an interface that may be instantiated for
different users or for the same user that is undergoing changes in his/her
expertise level. This facilitates the process in that it reuses internal and external
components, behaviors and designs throughout the system, maintaining
consistency with purpose throughout.

To make a first evaluation of the framework, a prototype of an application
was built and later tested by a group of graduate students. The results showed
that using applications based on the framework had a greater likelihood of
satisfying different groups as the application was closer to the conceptual
models that each group had of the system.

Once the user’s perception of the system changes over time, he/she
creates a new conceptual model of the system and the user model proposed
takes these modifications into account.

The proposed work showed that non-functional requirements, such as
human factors, are essential to building friendly interfaces. When they are
deliberated and modeled, the designed interface is naturally a friendly one and
the system has a better chance of success. This research study may open the
doorway to several other studies, such as the development of frameworks for
workgroups

One of the most important contributions of the present work has been
verifying, through testing in a group of students, that if non-functional
requirements are well defined, taking into account human-factors, the resulting
interfaces are much closer to the real necessities and expectations of users. In
order to accomplish this, it is necessary to begin to model the user from the
outset of the system design. The proposed framework, by having an embedded
user model, allowed systems to adapt to the different perceptions that users
had during their interaction with the application.

References

Apple Computer, Inc, (1992). “Macintosh Human Interface Guidelines” -
Addison-Wesly Company
Ambrosini, L., Cirillo, V. & Micarelli, A. (1997) “A Hybrid Architecture for User-
Adapted Information Filtering on the World Wide Web” – User Modelling:
Proceedings of the Sixth International Conference, UM97, Vienna, New York:
Springer Wien New York.
Bäumer, D., Cryczan, G., Knoll, R., Lilienthal, C.,Riehle, D. & Züllighoven, H.
(1997) “Frameworks Development For Large Systems” – Communications of
the ACM – Vol. 40. No. 10. October
Benaki, E., Karkaletsis, V. A.& Spyropoulos, C. D. (1997) "User Modeling in
WWW: the UMIE Prototype" - Proceedings of the Workshop: "Adaptive Systems
and User Modeling on the Word Wide Web" - Sixth International Conference on
User Modeling, Chia Laguna, Sardina.
Collins, D. (1995). “Designing Object-Oriented User Interface” -
Benjamin/Cummings Publishing Company, Inc.
Fayad, M. & Schmidt, D., C. (1997) “Object-Oriented Application Frameworks” –
Communications of the ACM – Vol. 40. No. 10. Octuber.

Accepted for publication in IAMOT – International Association for Management
of Technology (May 2003)

 Author's Copy

 10

Ferreira, S.B.L. (1999) “Um framework para associar interfaces a usuários”.
Doctoral thesis presented to Pontifícia Universidade Católica - 1999

Ferreira, S.B.L.; Carvalho, S.E.R.; Leite, J.C.S.P.; Melo, R.N. (1999)
“Requisitos Não Funcionais para Interfaces com o Usuário - O Uso de Cores”
Anais do 2º Workshop Iberoamericano de Ingeniería de Requisitos y Ambientes
Software IDEAS'99

Foley, J. D., Dam, A. V., Feiner, S. K. & Hughes, J. F. (1990) Computer
Graphics - Principles and Practice - Addison - Wesley Publishing Company.

Gamma, E., Helm, R., Johnson, R. &Vlissides, J. (1995) “Design Patterns –
Elements of Reusable Object-Oriented Software” - Addison-Wesley Publishing
Company.
Gutkauf B., Thies, S. & Domik, G. (1997) “A User Adaptive Chart Editing
System Based on User Modeling and Critiquing” – User Modelling: Proceedings
of the Sixth International Conference, UM97, Vienna, New York: Springer Wien
New York .
Hall, E. E.: “The Dance of Life”
Hix, D. & Hartson R. (1993) “Developing User Interfaces: Ensuring Usability
Through Product and Process” - John Wiley & Sons.
Hofstede, G. (1991) “Cultures and Organizations: Software of the Mind” –
McGraw Hill
Hoft, N. L. (1996) “Developing a cultural model” – publicado em “International
user Interfaces” editado por Elisa M. del Galdo & Jakob Nielsen
Johnson, R. E. (1997) “Frameworks (Component Patterns)” – Communications
of the ACM – Vol. 40. No. 10. Octuber.
Kroeber, A. La. & Kluckhohn, C. (1954) “Culture: A Critical Review of Concepts
and Definitions” – Random house – New Yorl.
Leite, J. C. S. P. (1995) Engenharia de Requisitos – Class Notes “Engenharia
de Requisitos” - Depto. de Informática da Pontifícia Universidade Católica do
Rio de Janeiro.
Marins, C. (1987). "Interfaces Inteligentes" – Dissertação de mestrado
submetida ao Departamento de Informática da Pontifícia Universidade Católica
do Rio de Janeiro.
Murray, D. (1991) “Modelling for Adaptivity” – Mental Models and Human-
Computer Interaction 2 – M. J. Tauber and D. Ackermann – Elsevier Science
Publishers B. V.
Norman, D. A. & Draper, S. W. (1986) “User Centered Design” – Hillsdale, NJ:
Lawrence Erlbaum.
Paranagama, P., Burstein, F. & Arnott, D. (1997) “Modelling the Personality of
Decision Makers for Active Decision Support” – User Modelling: Proceedings of
the Sixth International Conference, UM97, Vienna, New York: Springer Wien
New York.
Pree, W. (1995). “Design Patterns for Object-Oriented Software Development” -
Addison-Wesley Publishing Company.
Pressman, R. S. (1992) Software Engineering - A Practitioner’s Approach - 3rd
ed., McGraw-Hill, Inc.

Rich. E. (1979) “User Modeling Via Stereotypes” – Cognitive Science vol. 3 – 1.

Accepted for publication in IAMOT – International Association for Management
of Technology (May 2003)

 Author's Copy

 11

Roberts, D., Berry, D., Isensee, S. & Mullaly J. (1998) “Designing for the user
with OVID: Bridging User Interface Design and Software Engineering” –
MacMillan Technical Publising - Software Engineering Series.
Shlaer, S. & Mellor, S. J. (1992) “Object Lifecycles - Modeling the World in
States” Yourdon Press.
Shneiderman, B. (1998) “Designing the User Interface – Strategies for Effective
Human-Computer Interaction” – Addison_Wesley.
Souza, C. S de. & Leite, J.C. (1005) “Projeto de Interfaces de Usuário” -
Departamento de Informática - PUC-RIO.
Strachan, L., Anderson, J., Sneesby, M. & Evans, M. (1997) “Pragmatic User
Modelling in a Commercial Software System” – User Modelling: Proceedings of
the Sixth International Conference, UM97, Vienna, New York: Springer Wien
New York
Trompenaars, F. (1993) “Riding the Waves of Culture: Understanding Cultural
Diversity in Business” – Nicholas Brealey – 1993
Victor, D. A. (1992) “International Business Communication”, - Harper Collins

